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Report

Evaluating Statistical Significance in Two-Stage Genomewide Association
Studies
D. Y. Lin
Department of Biostatistics, University of North Carolina, Chapel Hill

Genomewide association studies are being conducted to unravel the genetic etiology of complex human diseases.
Because of cost constraints, these studies typically employ a two-stage design, under which a large panel of markers
is examined in a subsample of subjects, and the most-promising markers are then examined in all subjects. This
report describes a simple and efficient method to evaluate statistical significance for such genome studies. The
proposed method, which properly accounts for the correlated nature of polymorphism data, provides accurate
control of the overall false-positive rate and is substantially more powerful than the standard Bonferroni correction,
especially when the markers are in strong linkage disequilibrium.
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A decade ago, Risch and Merikangas (1996) suggested
that genetic variants predisposing to complex human
diseases could be identified through genomewide asso-
ciation scans involving hundreds of thousands or more
markers and thousands of subjects. With the recent
availability of genomewide surveys of genetic variants
(The International SNP Map Working Group 2001;
Hinds et al. 2005; The International HapMap Consor-
tium 2005) and the rapid decrease in SNP genotyping
costs, this vision has become a real possibility. Indeed,
numerous genomewide association studies for a range
of disorders are being planned or are already underway.

Despite recent advances in high-volume genotyping
technology, it is still prohibitively expensive to genotype
hundreds of thousands of markers in thousands of sub-
jects. Thus, most genomewide association studies adopt
a two-stage design: in the first stage, a dense set of SNP
markers across the genome is genotyped and tested using
a fraction of the available subjects, and, in the second
stage, the most-promising markers are genotyped in the
remaining subjects and tested using all subjects (Sata-
gopan et al. 2002, 2004; Satagopan and Elston 2003;
Maraganore et al. 2005; Thomas et al. 2005; Skol et
al., in press).

Assessing statistical significance in such two-stage ge-
nome studies presents an important challenge. The cur-
rent practice is to use the Bonferroni correction based
on the total number of markers tested in the first stage
(Maraganore et al. 2005; Thomas et al. 2005). This

strategy is punitively conservative for two reasons. First,
it assumes that none of the markers eliminated in stage
1 would reach statistical significance if they were ge-
notyped and tested in stage 2. Second, it assumes that
the test statistics are independent over all markers. The
first assumption was relaxed by Skol et al. (in press).
The second assumption fails when markers are in link-
age disequilibrium (LD). The ENCODE data from the
HapMap Project reveal that SNPs are typically in com-
plete LD with several nearby SNPs and in strong LD
with many others; thus, the Bonferroni correction is
highly conservative (The International HapMap Con-
sortium 2005).

In this report, I show how to properly incorporate the
two-stage sampling and the correlation structure of the
test statistics into the evaluation of statistical signifi-
cance. The strategy relies on the fact that the statistics
used in association testing can be represented by the so-
called efficient score functions, which are sums of in-
dependent terms (see appendix A). This fact implies that
the statistics are jointly normal in large samples, both
over the markers and between the two stages, with cor-
relations that can be estimated empirically from the data.
I develop an efficient Monte Carlo algorithm to evaluate
this joint distribution, providing appropriate thresholds
for declaring statistical significance.

Suppose that a total of m markers are genotyped and
tested on subjects in stage 1, and the most-promisingn1

markers are genotyped in the remaining n p n � n2 1
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subjects and tested using all n subjects in stage 2. All
subjects are assumed to be unrelated. For ands p 1,2

, the test statistic for testing the mth markerj p 1, … ,m
in the sth stage can be written in the following form or
can be approximated by the statistic of the following
form:

T �1T (s) p U (s) V(s) U (s) ,j j j j

where

n1

U (1) p U ,�j ji
ip1

n

U (2) p U ,�j ji
ip1

involves only the data from the ith subject,Uji

n1

TV(1) p U U ,�j ji ji
ip1

and

n

TV(2) p U U .�j ji ji
ip1

Note that pertains to the efficient score function, andUj

is the covariance matrix of (see appendix A). InV Uj j

most situations,

U p (Y � m )(X � m ) ,ji i y ji j

where is the phenotypic value of the ith subject,Y Xi ji

is the genotype score for the jth marker of the ith subject,
and and are the population means of and ,m m Y Xy j i ji

respectively. In the actual calculations of , andT (s) mj y

are replaced with the sample means.mj

Under the null hypothesis of no association, isU (s)j

approximately normal with mean zero and covariance
matrix in large samples, so has an approximateV(s) T (s)j j

x2 distribution with d df, where d is the dimension of
. In addition, is ap-U (s) [U (1), … ,U (1),U (2), … ,U (2)]j 1 m 1 m

proximately multivariate normal with mean zero and
covariance matrices

n1

TCov [U (1),U (1)] p Cov [U (1),U (2)] p U U�j k j k ji ki
ip1

and

n

TCov [U (2),U (2)] p Cov [U (1),U (1)] � U U .�j k j k ji ki
ipn �11

Note that if andCov (Z ,Z � Z ) p Cov (Z ,Z ) Z1 2 3 1 2 1

are uncorrelated. The values ofZ U (i p n � 1, … ,n)3 ji 1

are unknown unless the jth marker is genotyped in stage
2. However,

n

TU U� ji ki
ipn �11

can be estimated by

n1n2 TU U ,� ji kin ip11

provided that the subjects are randomly chosen for ge-
notyping in stage 1.

I derive a simple and efficient Monte Carlo proce-
dure to evaluate the joint distribution of [U (1), … ,1

. DefineU (1),U (2), … ,U (2)]m 1 m

n1

Ũ (1) p U G�j ji i
ip1

and

1 n1n2 2 ′˜ ˜U (2) p U (1) � U G ,( ) �j j ji in ip11

where are independent standard′ ′G , … ,G ,G , … ,G1 n 1 n1 1

normal random variables. Also, define

T �1˜ ˜ ˜T (s) p U (s) V(s) U (s) .j j j j

Conditional on the observed data, ˜ ˜[U (1), … ,U (1),1 m

is multivariate normal with mean zero˜ ˜U (2), … ,U (2)]1 m

and (approximately) the same covariance matrix as
. Thus, one can use the[U (1), … ,U (1),U (2), … ,U (2)]1 m 1 m

joint distribution of to˜ ˜ ˜ ˜[T (1), … ,T (1),T (2), … ,T (2)]1 m 1 m

approximate that of .[T (1), … ,T (1),T (2), … ,T (2)]1 m 1 m

Suppose that the jth marker is selected for genotyping
in stage 2 if , where is chosen to achieve aT (1) 1 c cj 1 1

certain level of statistical significance or to yield a desired
proportion of markers for stage 2 testing. The null hy-
pothesis of no association between the jth marker and
disease is rejected if and , whereT (1) 1 c T (2) 1 c cj 1 j 2 2

is chosen so that, under the global null hypothesis of no
association,

Pr [T (1) 1 c and T (2) 1 c for some j] p a ,j 1 j 2

where a is the nominal type I error rate or significance
level. One can approximate this equation by

˜ ˜Pr [T (1) 1 c and T (2) 1 c for some j] p a . (1)j 1 j 2
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Figure 1 Empirical type I error rate and power at the nominal
significance level of 0.05. The red and orange curves correspond to
the type I error and power of the proposed method, respectively, and
the blue and green curves correspond to the type I error and power
of the Bonferroni correction, respectively. The X-axis pertains to the
squared correlation coefficient, , between two adjacent markers,2r
which varies from 0.5 to 0.99.

The probability on the left-hand side of equation (1) is
estimated by generating a large number, say 10,000, of
realizations of and .˜ ˜T (1) T (2)j j

Given and a, one can use equation (1) to determinec1

. This calculation can be done through a bisectionc2

search based on a single set of realizations of andT̃ (1)j

. In practice, on the left-hand side of equationT̃ (2) cj 2

(1) is replaced with the observed value of , andT (2)j

significant association with the jth marker is declared if
the resulting probability is !a.

To assess the performance of the proposed method, I
simulated 10,000 SNPs with minor-allele frequencies of
0.3 and varying degrees of LD. I set the disease preva-
lence in the population to be ∼5%. Under the null hy-
pothesis, none of the SNP markers was associated with
disease. Under the alternative hypothesis, the minor al-
lele of SNP 5,000 had a dominant effect with a relative
risk of 1.5. I selected 1,000 cases and 1,000 controls
and used the Pearson x2 statistic under the dominant
model to test the association between each SNP and
disease status. I set the nominal significance level at 0.05.

Figure 1 displays the results for the two-stage design,
under which 50% of the cases and controls are geno-
typed in stage 1; was set at 3, so that ∼10% of thec1

markers are selected for genotyping in stage 2. The re-
sults for other designs are similar and thus omitted. The
empirical type I error rate pertains to the probability of
finding any association under the null hypothesis, and
the empirical power pertains to the probability of iden-
tifying SNP 5,000 under the alternative hypothesis. Each
of these probabilities was estimated from 1,000 simu-
lated data sets; for each data set, the Monte Carlo eval-
uation was based on 10,000 normal samples.

As shown in figure 1, the proposed method maintains
its type I error near the nominal level, whereas the Bon-
ferroni correction is conservative. The type I error rates
of the proposed method are ∼0.052, 0.055, and 0.050
when the squared correlation coefficient, , between2r
two adjacent markers is 0.5, 0.9, and 0.99, respectively.
By contrast, the corresponding type I rates based on the
Bonferroni correction are ∼0.037, 0.022, and 0.002.

The proposed method is considerably more powerful
than the Bonferroni correction, especially when the
markers are in strong LD. The power of the proposed
method is ∼75%, whereas that of the Bonferroni cor-
rection is ∼65%, when between two adjacent markers2r
is 0.9; the corresponding power estimates are 85% and
60% when is 0.99. For the Bonferroni correction to2r
achieve the same power as that of the proposed method,
the sample sizes would need to be increased by ∼15%
and 30% when the values between two adjacent2r
markers are 0.9 and 0.99, respectively. Thus, the power
advantages of the proposed method have important
implications.

In the studies above, LD was created by allowing the

SNP allele frequencies of each marker to depend on those
of the preceding marker, so that the LD decays expo-
nentially as the intermarker distance increases. When

is 0.9 between two adjacent markers, the value of2r
is 0.8 between every second marker and 0.3 between2r

SNPs that are 10 markers apart; when is 0.99 between2r
two adjacent markers, the value of is 0.98 between2r
every second marker and 0.8 between SNPs that are 20
markers apart.

To generate more-realistic LD structures, I considered
the HapMap data (The International HapMap Consor-
tium 2005). I simulated data in the same manner as in
the studies above, except that the genotypes were sam-
pled from the white phasing data in the ENCODE region
of chromosome 4, which consists of 1,393 SNPs. Under
the null hypothesis of no association, the type I error
rates were found to be ∼0.047 and 0.009 for the pro-
posed and Bonferroni methods, respectively. Under the
alternative hypothesis that SNP 1,100, which has a mi-
nor-allele frequency of ∼0.2, had a dominant effect with
a relative risk of 1.5, the power was ∼0.91 for the pro-
posed method, compared with 0.78 for the Bonferroni
correction.

The results in figure 1 pertain to 10,000 SNPs, which
is approximately the number of markers on a single
chromosome in the currently available 100K–500K SNP
platforms. Since the test statistics are generally uncor-
related among the chromosomes, the proposed method
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can be applied to each chromosome separately. It is un-
clear whether one should adjust for multiple compari-
sons among chromosomes when hundreds of thousands
or more markers are tested. It is perhaps more sensible
to control a few (say, 10–20) false positives rather than
a single one in such massive-scale hypothesis testing
(Lehmann and Romano 2005).

The above studies were concerned with single-locus
effects. The proposed method is certainly applicable to
multilocus searches, including interactions and haplo-
type effects (Epstein and Satten 2003). The method is
also potentially useful for complex multistage studies.

This method combines the raw data from the two
stages in the final analysis. An alternative approach is
to combine the two test statistics (i.e., to sum the two
standardized statistics) (Skol et al., in press). It is trivial
to modify this method for the combined test statistics,
provided that the subjects are randomly selected for ge-
notyping in stage 1. However, a major motivation for
combining the two test statistics is to allow for hetero-
geneity between the first-stage and second-stage samples.
The work of Zaykin et al. (2002) and Dudbridge and
Koeleman (2004) can also be extended to two-stage
studies through this Monte Carlo approach. Although
I have focused on studies of unrelated individuals, the
proposed method can be adapted to family studies by
changing “subject” to “family” in the description.

Because of the two-stage sampling, the method de-
scribed here is different from that of Lin (2005a, 2005b).
In particular, the new Monte Carlo procedure circum-
vents the problem that the genotype data are unobserved
for those markers eliminated in the first stage.

Unlike for single-stage studies, it is not possible to
evaluate statistical significance for two-stage studies by
permutation. If the value of based on the originalT (1)j

data does not exceed , then the jth marker is not ge-c1

notyped in stage 2. When the data are permuted, the
value of based on the permuted data may exceedT (1)j

. In that case, one needs to evaluate on the basisc T (2)1 j

of the permuted data, but that evaluation is not possible
because the jth marker is missing in all subjects.n2

The proposed method provides an essential ingredient
for designing genomewide association studies. In the de-
sign stage, one would simulate the genotype data for the
specific SNPs to be tested and use equation (1) to de-
termine . One would then determine the power byc2

evaluating the probabilities of true detection for various
relative risks through simulation.

I found that two-stage designs in which ∼50% of the
available subjects are genotyped in stage 1 and the top
1%–10% of the markers are genotyped in stage 2 are
nearly as powerful as the single-stage design that ge-
notypes all markers in all subjects (data not shown).
Similar findings were reported elsewhere for independent
test statistics (Satagopan and Elston 2003; Skol et al.,

in press). Thus, two-stage designs are highly cost effec-
tive. With the Bonferroni correction, the penalty is pro-
portional to the number of markers tested in stage 1,
regardless of the marker density. By contrast, the pro-
posed method properly accounts for the actual corre-
lations of SNPs and does not unfairly penalize SNP plat-
forms with very high density.

A computer program that implements the proposed
method is freely available at the author’s Web site (see
Web Resource section). The computing time is linear in
relation to the number of markers and the number of
subjects. The analysis for a typical genome scan (100K–
500K markers and 1,000–5,000 subjects) can be com-
pleted in a short amount of time on any high-perfor-
mance computer.
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Appendix A

Score Statistics

For quantitative traits, it is natural to consider the
linear regression model

TY p m � b X � e , (A1)i ji i

where is the ith subject’s genotype score for the jthXji

marker and is normal with mean 0 and variance .2e ji

For simplicity of description, the dependence of the pa-
rameters on j is suppressed. Under the additive model,

denotes the number of minor alleles that the ith sub-Xji

ject has; under the dominant (or recessive) model, Xji

indicates, with values of 1 and 0, whether or not the ith
subject has at least one minor allele (or, for the recessive
model, two minor alleles); under the codominant model,

consists of two components indicating one and twoXji

minor alleles. For dichotomous traits, it is common to
employ the logistic regression model

Tn�b Xjie
P(Y p 1) p . (A2)Ti n�b Xji1 � e

One is interested in testing the null hypothesis H :0

against the alternative hypothesis atb p 0 H :b ( 01

every marker. The parameters m and in model (A1)2j

and n in model (A2) are nuisance parameters, which are
denoted by h. There are three asymptotically equivalent
test statistics: the Wald statistic, the likelihood-ratio sta-
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tistic, and the score statistic. Here, it is convenient to
work with score statistics.

The log-likelihood function for at the jth mar-(b,h)
ker is , where pertains ton

l (b,h) p � l (b,h) l (b,h)j ji jiip1

the contribution from the ith subject. Let U (b,h) pb,ji

and . The score statis-�l (b,h)/�b U (b,h) p �l (b,h)/�hji h,ji ji

tic for testing takes the formH :b p 00

n

˜U p U (0,h) , (A3)�j b,ji
ip1

where is the (restricted) maximum-likelihood estimatorh̃

of h under —that is, the solution to the equationH0

. Note that is the score function forn� U (0,h) p 0 Uh,ji jip1

b evaluated at and and is not a sum of˜b p 0 h p h

independent terms for a given j. It follows from the
Taylor series expansions and the law of large numbers
that has the same asymptotic distribution as�1/2n Uj

, wheren�1/2n � Ujiip1

�1U p U (0,h) � S (0,h)S (0,h)U (0,h)ji b,ji bh hh h,ji

and and are the limits ofS (b,h) S (b,h)bh hh

and as n goes to infin-�1 2 �1 2 2n � l (b,h)/�b�h n � l (b,h)/�hj j

ity (Cox and Hinkley 1974, section 9.3(iii)). One calls
the ith subject’s efficient score function. Under bothUji

models (A1) and (A2),

U p (Y � m )(X � m ) ,ji i y ji j

where and are the population means of andm m Yy j i

, respectively. Since involves only the observationsX Uji ji

from the ith subject, are independent zero-mean ran-Uji

dom vectors for any given j. Thus, it follows from the
multivariate central limit theorem that, under the null
hypothesis of no association, is asymp-�1/2n (U , … ,U )1 m

totically multivariate normal with mean 0 and with
as the covariance matrix between the jthn�1 Tn � U Uji kiip1

and kth markers.
In the actual calculations of the test statistics, the

unknown parameters in are replaced with theUji

(restricted) maximum-likelihood estimators. Since
by the definition of , the replace-n ˜ ˜� U (0,h) p 0 hh,jiip1

ment of h with in yields ,n n˜ ˜h U � U p � U (0,h)ji ji b,jiip1 ip1

which is consistent with the definition of the score sta-
tistic given in equation (A3). It can be shown that, under
model (A1) with a dichotomous genotype score,

n
— —� Uji Y � Yip1 1 2p ,1 1

2 2n 2 2S S1 22� U �ji( ) ( )ip1 n n1 2

where and are the numbers of subjects in the twon n1 2

groups and and are the sample means
— — 2 2(Y ,Y ) (S ,S )1 2 1 2

and sample variances in the two groups. This is, of
course, the well-known two-sample t statistic. Likewise,
the familiar Pearson x2 statistics can be generated under
model (A2).

The above description pertains to single-stage studies.
However, all the results can be extended to two-stage
designs in an obvious manner.

Web Resource
The URL for data presented herein is as follows:

Author’s Web site, http://www.bios.unc.edu/˜lin/
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